The Electronic Structures and Optical Properties of Alkaline-Earth Metals Doped Anatase TiO2: A Comparative Study of Screened Hybrid Functional and Generalized Gradient Approximation
نویسندگان
چکیده
Alkaline-earth metallic dopant can improve the performance of anatase TiO2 in photocatalysis and solar cells. Aiming to understand doping mechanisms, the dopant formation energies, electronic structures, and optical properties for Be, Mg, Ca, Sr, and Ba doped anatase TiO2 are investigated by using density functional theory calculations with the HSE06 and PBE functionals. By combining our results with those of previous studies, the HSE06 functional provides a better description of electronic structures. The calculated formation energies indicate that the substitution of a lattice Ti with an AEM atom is energetically favorable under O-rich growth conditions. The electronic structures suggest that, AEM dopants shift the valence bands (VBs) to higher energy, and the dopant-state energies for the cases of Ca, Sr, and Ba are quite higher than Fermi levels, while the Be and Mg dopants result into the spin polarized gap states near the top of VBs. The components of VBs and dopant-states support that the AEM dopants are active in inter-band transitions with lower energy excitations. As to optical properties, Ca/Sr/Ba are more effective than Be/Mg to enhance absorbance in visible region, but the Be/Mg are superior to Ca/Sr/Ba for the absorbance improvement in near-IR region.
منابع مشابه
Structural and electronic properties of N-doped TiO2 anatase nanoparticles and their effects on the adsorption of Hydrazine (N2H4) molecule: A first-principles study
We have performed a density functional theory investigation on the structural and electronic properties of pristine and Nitrogen-doped TiO2 anatase nanoparticles as the adsorbents for removal and degradation of hydrazine molecules in the environment. We have presented the most stable adsorption configurations and examined the interaction of hydrazine molecule with these doped and undoped nanopa...
متن کاملStructural and electronic properties of N-doped TiO2 anatase nanoparticles and their effects on the adsorption of Hydrazine (N2H4) molecule: A first-principles study
We have performed a density functional theory investigation on the structural and electronic properties of pristine and Nitrogen-doped TiO2 anatase nanoparticles as the adsorbents for removal and degradation of hydrazine molecules in the environment. We have presented the most stable adsorption configurations and examined the interaction of hydrazine molecule with these doped and undoped nanopa...
متن کاملTheoretical study of the interaction of harmful heroin molecule with N-doped TiO2 anatase nanoparticles
Density functional theory calculations were carried out to study the interaction of heroin molecule with pristine and N-dopedTiO2 anatase nanoparticles. The oxygen atom of heroin molecule was found to be the binding site on the heroin molecule. In contrast, the binding site of TiO2 nanoparticle was positioned over the fivefold coordinated titanium atoms. The results showed that the adsorption e...
متن کاملTheoretical study of the interaction of harmful heroin molecule with N-doped TiO2 anatase nanoparticles
Density functional theory calculations were carried out to study the interaction of heroin molecule with pristine and N-dopedTiO2 anatase nanoparticles. The oxygen atom of heroin molecule was found to be the binding site on the heroin molecule. In contrast, the binding site of TiO2 nanoparticle was positioned over the fivefold coordinated titanium atoms. The results showed that the adsorption e...
متن کاملElectronic and optical properties of Cr and Cr-N doped anatase TiO2 from screened Coulomb hybrid calculations.
We studied the electronic and atomic structures of anatase TiO2 codoped with Cr and N using hybrid density functional theory calculations. The nonlocal screened Hartree-Fock exchange energy is partially mixed with the traditional semilocal exchange energy. This not only patches the bandgap underestimation but also improves the description of the anion/cation-driven impurity states and the magne...
متن کامل